The zeros of the Weierstrass ℘–function and hypergeometric series

نویسنده

  • W. Duke
چکیده

We express the zeros of the Weierstass ℘-function in terms of generalized hypergeometric functions. As an application of our main result we prove the transcendence of two specific hypergeometric functions at algebraic arguments in the unit disc. We also give a Saalschützian 4F3–evaluation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fractal SUSY-QM model and the Riemann hypothesis

The Riemann’s hypothesis (RH) states that the nontrivial zeros of the Riemann zeta-function are of the form s = 1/2+iλn. Hilbert-Polya argued that if a Hermitian operator exists whose eigenvalues are the imaginary parts of the zeta zeros, λn’s, then the RH is true. In this paper a fractal supersymmetric quantum mechanical (SUSY-QM) model is proposed to prove the RH. It is based on a quantum inv...

متن کامل

Hypergeometric Origins of Diophantine Properties Associated with the Askey Scheme

The “Diophantine” properties of the zeros of certain polynomials in the Askey scheme, recently discovered by Calogero and his collaborators, are explained, with suitably chosen parameter values, in terms of the summation theorem of hypergeometric series. Here the Diophantine property refers to integer valued zeros. It turns out that the same procedure can also be applied to polynomials arising ...

متن کامل

A Subclass of Analytic Functions Associated with Hypergeometric Functions

In the present paper, we have established sufficient conditions for Gaus-sian hypergeometric functions to be in certain subclass of analytic univalent functions in the unit disc $mathcal{U}$. Furthermore, we investigate several mapping properties of Hohlov linear operator for this subclass and also examined an integral operator acting on hypergeometric functions.

متن کامل

Recursion rules for the hypergeometric zeta function

The hypergeometric zeta function is defined in terms of the zeros of the Kummer function M(a, a+b; z). It is established that this function is an entire function of order 1. The classical factorization theorem of Hadamard gives an expression as an infinite product. This provides linear and quadratic recurrences for the hypergeometric zeta function. A family of associated polynomials is characte...

متن کامل

Fractal supersymmetric QM, geometric probability and the Riemann hypothesis

The Riemann’s hypothesis (RH) states that the nontrivial zeros of the Riemann zeta-function are of the form sn = 1/2 + iλn. Earlier work on the RH based on supersymmetric QM, whose potential was related to the Gauss-Jacobi theta series, allows to provide the proper framework to construct the well defined algorithm to compute the probability to find a zero (an infinity of zeros) in the critical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007